返回首页

为何称古龙页岩油?

来源:www.dbkyw.com   时间:2023-01-29 01:07   点击:276  编辑:admin   手机版

为何称古龙页岩油?

因为古龙页岩油是典型的陆相泥级页岩油,石油富集在页理缝和基质孔隙内,岩性细腻,粘土矿物含量高达35%以上,以前被认为是孔隙度极低和渗透性极差的岩石,基本不可能储油。古龙页岩油对油气勘探开发而言,是一个全新的领域,在全国范围内广泛发育,具有广阔的勘探开发前景。

大庆油田经过62年的高速高效勘探开发,常规油气资源已进入发现中后期,难以支撑长期持续稳产。

古龙页岩油的成功实践标志着松辽盆地进入非常规时代,是大庆油田长期稳产的重要物质基础。

原油的同位素研究

原油是由烃源岩中的生油物质干酪根经过复杂的地质地球化学过程演化而成的。原油的各种有机化学组分的同位素组成与干酪根的原始值存在不同程度的差别,差别的程度取决于油气成藏的条件与过程。了解影响原油的各种有机化学组分的同位素组成的控制因素及变化规律,对于厘定原油的成因类型,开展油源的对比,指导油气地质勘探具有重要意义。

1.原油同位素与形成环境

一般认为,石油是由海相或陆相盆地沉积物中的动植物残体逐渐演化而形成的,海相有机质的碳同位素组成与陆相不同:海相石油的碳同位素组成重(δ13C=-23‰~-19‰),而陆相石油轻(δ13C=-27‰~-24‰)。从生油角度看,湖相沉积是陆相生油的主要环境,可分为以下亚环境:淡水―微咸水湖相沉积、半咸化―咸化湖相沉积和淡水相沉积。海相沉积中的生油岩主要由碳酸盐岩和泥岩组成,与生油关系密切的亚相有湖相、台地相、斜坡相、盆地相以及陆、海混源的三角洲相。

Freeman等(1990)认为,不同沉积环境决定了有机质的性质,不同的有机质具有不同的碳同位素组成,通过原油单体烃碳同位素的研究,可以了解生物标志分子的生油特征及判别它们是否是同源,比全油碳同位素更能反映出成油母质的性质及所处的沉积环境。原油的δ13C值与生油母岩的沉积环境密切相关,并受各种后期的或次生作用的影响:热蚀变可使剩余石油富δ13C(其δ13C值约增高l‰~2‰);细菌降解作用也可导致石油富集13C。

对陆相沉积环境而言,淡水―微咸水湖相正构烷烃系列的δ13C值分布在-32%~-34‰之间,轻烃单体系列的δ13C值分布在-30‰~-34‰之间,主要分布区间为-31.58‰~-32.9l‰;半咸水―咸水湖相正构烷烃δ13C值一般分布在-28‰~-30‰之间;淡水相正构烷烃的δ13C值都高于-29‰,一般在-25‰~-27‰之间,总的趋势是,所有湖相原油的单体系列的δ13C值一般随碳数的增高而变低。而对海相沉积环境而言,新元古界和古古生界的海相沉积正构烷烃的δ13C值一般为-35‰左右;上古生界和中新生界海相沉积正构烷烃的δ13C值分布在-30‰~-33‰之间。混源油单体烃的δ13C值相差较大:下古生界和上古生界海相、海陆交互相油源的δ13C值从低碳数的-30到高碳数的-40,而煤成油和湖相油的混合物,其单体烷烃δ13C值从低碳数的-24‰到高碳数的-32‰。

张文正等(1990)在研究塔里木盆地凝析油单体烷烃的碳同位素组成后指出,奥陶系凝析油单体烷烃的δ13C值大多在-29‰~-3l‰之间,同结构而碳数不同及不同结构的烷烃分子之间无明显的碳同位素分馏;石炭系凝析油轻烃单体的δ13C值分布在-28‰~-30‰之间,不同结构和不同碳数烷烃分子之间不存在明显的碳同位素分馏,三叠系凝析油轻烃单体分子的碳同位素组成十分接近,其δ13C值主要分布在-28.5‰~-30.05‰之间,其正构烷、环烷和芳烷的碳同位素组成极相似。此外,海相凝析油的单体烷烃的δ13C值分布同样可以反映其生油母质在沉积环境上的差异。下古生界海相原油的单体烷烃的δ13C值为-35‰左右,而凝析油则大约为-32‰;上古生界海相原油约为-31‰,凝析油约为-28‰;混合油正构烷烃的δ13C值为-30‰~-40‰,混合凝析油则为-27‰~-35‰。总体上凝析油的单体烷烃的δ13C值较原油约高3‰。

图14-1 须家河组全油碳同位素对比

原油的碳同位素海相原油较陆相原油富13C,我国一般以δ13C=-29.5‰作为海相油和陆相油界限,而典型的煤成油的碳同位素组成一般较重。根据须家河组全油碳同位素对比柱状图(图14-1)可知,不同构造区原油存在一定的差异,但总体都重于-29.5‰,个别样品相对较轻,但基本重于-30‰,说明这些油主要为煤系中的泥岩产物。须家河组煤系烃源岩不易成油,而易成气,少量凝析油或原油应主要为混合型有机质产出,特别是由一些较深水的暗色泥岩所生成,因此表现的全油同位素与典型煤成油不同,据文献报道吐哈盆地典型煤成油碳同位素重达-24‰~-26‰(PDB)。

根据油气生成模式,由于碳同位素的分馏作用,生成的油气与源岩有很好的相关性。虽然沉积物的沉积环境等对于干酪根的碳同位素值有影响,但是对于干酪根碳同位素值影响最大的还是干酪根的类型即有机质的原始成分,不同类型有机质碳同位素不同,这就奠定了用同位素来进行油气源对比的基础。我国的煤成油比一般陆相原油的碳同位素重,全油碳同位素值变化在-24.5‰~-28.44‰之间,平均-26.34‰。陈建平等认为我国西北地区典型侏罗纪煤成油碳同位素值一般在-27‰~-25‰之间,平均在-26‰左右。

2.油源同位素对比

油/油、油/烃源岩对比研究在油气资源评价与勘探中具有重要的意义,因为通过这种对比研究,可以查明含油气盆地中石油和天然气与生油层之间的成因联系、油气运移的方向和距离以及油气的次生变化,为寻找新的含油层位以及对石油储量评价提供可靠的信息。油/油、油/烃源岩对比研究的3个主要对象是源岩中不溶的干酪根、可溶的沥青和聚集在圈闭中的石油、凝析油和天然气。

H.M.Chung等(1994)研究了海相原油621件样品的碳同位素组成,并对不同时代原油的碳同位素组成进行了对比研究。根据研究结果,他们把海相原油划分为4种基本类型:渐新世和渐新世前的海相页岩油(其δ13C值为-32‰~-28‰)、不同时代的三角洲相油(其δ13C值为-28‰~-23.5‰,S含量≤0.5%,姥鲛烷(pristane)/植烷(phytane)即Pr/Ph≥1.2)、中生代碳酸盐岩相油(其δ13C值为-28‰~-23.5‰,S含量>0.5%,Pr/Ph<1.2)和中新世海相页岩油(其δ13C值大于-23.5‰)。

张文正等(1995)在对鄂尔多斯盆地进行油/烃源岩和油/油对比后指出,源岩显微组分构成的不同是造成正构烷烃碳同位素分布特征存在差别的内在因素。赵孟军等(1995)利用原油中单体烃碳同位素分布特征,将塔里木盆地原油、凝析油划分出不同类型,并探讨了成因,他们认为,原油碳同位素对母质的继承性是用单体碳同位素划分原油类型的基础;细菌作用是造成下古生界原油中单体组分碳同位素数据曲线呈锯齿状分布的主要原因。张文正等(1990)研究了塔里木盆地不同时代凝析油的单体烃碳同位素分布的特征,并进行了油/油对比和成因分类,他们认为塔里木盆地存在煤成油、油型油与混合成因油3种类型,其中油型油又可按母岩的时代划分为奥陶系(寒武系)、石炭系和三叠系3种不同的类型;煤成油的烃源岩为侏罗系煤系层,因不同嗜甲烷细菌捕获甲烷的效率差异可形成不同烃类单体化合物,这些单体都不同程度地富集13C。

油源同位素对比有以下方法:

(1)油(气)源岩中总烃δ13C的油源对比

自全烃碳同位素被用来进行油源对比以来,很多学者在这方面做了研究,发现油气源具有

δ13C干酪根>δ13CA(源岩)>δ13C油的关系。因此他们认为只要δ13C干酪根-δ13CA=0~1.5和δ13CA-δ13C油=0~1.5就可以认为油(气)源间有成因联系。利用原油δ13C和源岩δ13CA值相近来进行油气源对比研究已经广泛应用。江继刚(2003)等在江汉盆地还用全油δ13C和干酪根δ13C值相近且δ13C油<δ13C干酪根来确定油源关系。

图14-2 油源对比的δ13C值(据Welte,1975)

石油、沥青和干酪根的碳同位素成分之间的关系,是一个性质特殊的对比参数。它的重要性在于将石油和可能生油岩中的干酪根和沥青直接联系起来。当原始有机质和热演化条件相同时,油与源岩之间的碳同位素组成是可比的。在干酪根热演化过程中,由于热分解使产物中碳同位素较残余物中碳同位素轻。同源沥青中的碳同位素一般要比干酪根中轻,但δ13C值的差不会大于2‰~3‰。而由干酪根形成的石油δ13C值与沥青相同或稍轻。这个差异也不会大于2‰。图14-2是油源对比图。

(2)原油与油砂抽提物的碳同位素特征及油源对比

液态烃碳同位素对母质有很强的继承效应。因此,在油源对比中,碳同位素研究成为有力的手段之一。吐哈盆地不同类型液态烃的碳同位素值相差达5‰~6‰,在无多源复合的情况时极易判别。盆地内艾参1井油砂抽提物与托参1井二叠系湖相原油的碳同位素值具有较好的可比性,差异在1‰左右,而台北凹陷煤成油的碳同位素值则富集13C达4‰~5‰。显然,艾参1井油砂抽提物应是与托参1井有相似母质来源,即源于二叠系湖相烃源岩。有机地球化学的有关研究也证实了碳同位素的研究结果,可以说,油砂脱附气、抽提物的碳同位素和抽提物生物标记物等研究都说明艾参1井油砂烃类来源于湖相烃源岩,这与该区地质背景相吻合,并可将之框定为主要源于二叠系烃源岩(不排除石炭系在该区作为烃源的可能)。吐哈盆地近年油气勘探在上古生界的突破,验证了这一认识。

(3)同位素类型曲线对比法

同位素类型曲线对比是根据原油或抽提物经蒸馏分离所得不同分子类型的馏分,即饱和烃、芳烃、杂原子化合物和沥青质而建立的(Stahl,1978)。原油或抽提物随极性和极化率的增加,显示出13C的规则富集,即饱和烃馏分的同位素成分最轻,而沥青馏分中13C最多。如果沥青馏分和干酪根有成因联系,则沥青质和干酪根的13C/12C比值就非常相似,将原油或抽提物各馏分有规律增加的13C/12C比值外推,就能对已取得的一种原油或一种抽提物进行其干酪根δ13C值的经验估算。

油气组分的碳同位素类型曲线δ13C值的油源对比,是随着人们对碳同位素的影响因素认识的深入,发现用油气与源岩中各对应组分进行油气源对比效果更好,所以提出用碳同位素类型曲线来作油源对比。一般认为,原油中各组分的碳同位素在同位素类型曲线上外推的干酪根δ13C与实测δ13C值相差小于0.5‰,就有好的相关性。现在碳同位素类型曲线已经成为油源对比的常用方法。在勘探实践中,还采取一种更为详细的方法,即在勘探井中可能的烃源岩层位,间隔地采集岩石样品,将可溶有机质再细分为族组分,然后将不同族组分的δ13C值随样品所处的不同深度绘成系列的同位素类型曲线。把原油族组分的同位素类型曲线与之比较,两种曲线形状基本一致的对应层段,就应该是该原油的烃源岩。当然,这种对比的一个重要前提是,烃源岩与所分析原油的成熟度应基本一致。Stahl(1978)提出利用稳定碳同位素类型曲线进行油源追踪,原油的饱和烃、芳烃、非烃和沥青质的δ13C值,随着极性的增强而依次增加,这5种组分的δ13C值延长线应落在生油岩干酪根的δ13C值及其附近,偏离值在0.5×10-3之内,或者碳同位素分布曲线形状相近(图14-3),就可认定它们之间具有亲缘关系。对于油-油对比,石油中的碳同位素类型曲线可将石油分类对比(图14-4)。

图14-3 蒂曼-伯朝拉盆地3个原油的不规则碳同位素曲线

图14-4 原油碳同位素类型曲线(据廖永胜,1982)

(4)单体化合物同位素的油源对比

自CSIC方法诞生以来,国内外学者就进行了大量的研究,把同位素的应用推入到分子级别。Whiticar(1999)用汽油范围分子稳定碳同位素来作油源对比。与常规的油源对比的碳同位素分析方法原理相同,利用单体烃系列的δ13C值进行油源对比研究时,也是将原油内及可能的烃源岩中氯仿抽提有机质的正构烷烃进行在线碳同位素分析,然后将结果回归进行相关性与亲缘分析、判断。

张正文等(1997)用单体烃碳同位素来对塔里木盆地的原油进行分类,并确定它们的来源和成因,而且成功地总结了姥鲛烷和植烷分子的碳同位素特征及分布模式,用于油源对比和油-油混源判别。

同源同系列烃的碳同位素组成相近,而不同源的同系物烃的碳同位素存在一定的差异,因此可以用同系物的同位素来进行油源对比。用系列烃同位素组成及其分布模式在柴达木盆地和吐哈盆地已经成功地对原油进行了分类并确定了油源。

顶一下
(0)
0%
踩一下
(0)
0%