返回首页

孔隙型地热回灌典型实例分析

来源:www.dbkyw.com   时间:2023-04-06 23:18   点击:245  编辑:admin   手机版

天津地热田属典型的沉积盆地型地热资源,回灌开采历史长、规模大。据统计数据,2008年度回灌量近600×104m3/a,整体回灌率近23%,其中基岩回灌率达41%,效果明显。相对而言,孔隙型热储回灌工作进展缓慢,回灌率不足2%。究其原因是由于各种因素引起的堵塞致使回灌量衰减过快,回灌率太低,难以做到连续稳定的回灌,这些问题一直是阻碍其回灌工作快速发展的重要因素。影响回灌效果的原因很多,除了孔隙型储层“先天存在缺陷、后天易受损害”的特征外,主要有三个方面:一是成井过程对储层造成伤害,包括井身结构选择,钻井液、洗井方式和成井工艺等;二是地面回灌系统,包括地面净化系统、回灌方式、采灌井间距及回灌井的定期维护;三是回灌流体进入储层以后与储层及地热流体的物理作用、化学作用等。谢玉洪等将其归纳为储层的外在伤害因素(钻井、开采、修井引起)和内在伤害因素(储层空间、矿物、岩石表面、强度,应力及环境变化)。在实际进行回灌操作时,如果能较好的解决对储层伤害问题,且回灌运行操作技术措施得当,回灌率是有望得到提高的。

天津东部的滨海新区大港某职业学院内,有孔隙型地热井两眼,目的层均为馆陶组,开采井DG-49为校区宿舍、教学楼及办公大楼提供供暖热源和生活热水,回灌井DG-49B用于循环尾水回灌。该供暖系统运行状况不理想,能耗大、资源利用效率低;回灌系统不规范,同时,该地区馆陶组储层泥质含量大,多为粉细砂,导致回灌量较小,回灌持续时间短,资源浪费严重。针对存在问题对供暖系统和回灌系统进行多种技术改造后,资源利用率和回灌率得以提高,最大限度的减少了资源消耗。

1.原对井回灌系统存在的问题

开采井DG-49于2005年成井,目的层为新近系馆陶组下段,井口流体温度61℃,成井初期最大流量为81m3/h,实际平均开采量为64m3/h,供热面积9×104m2;回灌井DG-49B目的层馆陶组下段,井深1892m,出水温度62℃,成井初期流量为85m3/h。该项目建成之初,开采井和回灌井泵房均处于地下,DG-49B井泵房内长期积水,井口设备受到强烈的腐蚀,井房大小为3m×2m×3m,空间狭小,没有任何监测仪器,地热换热后直接进行回灌,没有任何水质处理措施及加压等其他配套设施,回灌效果差,回灌量仅10~15m3/h。

2.回灌系统改造

鉴于该项目回灌效果不佳的状况,依据《天津市地热回灌地面工程建设标准(DB29―187―2008)》和《天津市地热回灌运行操作规程》(2006年)等地方工程建设标准和行业规程,对回灌系统进行整体改造。将开采井井口改造修建成景观亭台式地下泵房,进一步完善泵房功能,泵房室内面积近40m2,高2.6m,泵房地面及四周墙壁均做了防水处理,泵房屋顶提供井泵检修及提、下泵所需的活动井泵孔,室内有0.8m×0.8m×0.8m的集水坑,集水坑内设置潜水排污泵,弃水可通过潜水排污泵提升到室外排水处。回灌井DG-49B的改造包括提升井口,在地面修建了空间较大的井泵房,并安装了温度变送器(0~50℃,L=100mm)、压力变送器(0~1.6MPa)、电磁流量计、自动水位监测仪等一系列监测装置,同时安装了下位机,建立了智能远程控制系统;为了与智能化监测系统结果相互校核,更准确、更稳定的观测回灌运行参数,同时在井口安装人工监测装置,包括热水表、温度表(0~50℃)、压力表(0~1.0MPa)、水位测管,用以监测流量、温度、压力、水位等动态参数;回灌井泵房内安装有具备反冲洗功能的精度为50μm的粗效过滤器(DL3P-2S)和精度达到3μm的精密过滤器(LGFN-125-1.0B),配备反冲泵、反冲储水箱、排气灌、加压泵等各种设备,用于对回灌流体进行地石净化处理和加压;在房顶安装了电动葫芦,用于方便提下泵;同时设置有排水沟及排水地漏,用于收集地面散水或设备溢流;各类输水管网均采用普通钢管并进行防腐防垢处理,同时选用厚为30mm的聚氨酯保温层、外包0.5mm镀锌钢板保温。

改造后回灌系统中,地热循环尾水先行经过粗效-精密两道过滤流程后,再通过排气装置进行排气处理,流体最后从回灌井注入储层。同时加压泵的设置能随时在回灌量不理想时启动,进行加压回灌试验和压力回灌。

3.回灌试验

回灌试验在冬季供暖期进行,进水方式为井管与泵管的环状间隙,回灌量通过阀门控制。为方便回扬,回灌井中下置潜水泵。试验中的各项参数由电磁流量计、温度传感器、压力传感器和自动水位监测仪等进行实时监测。共进行4组试验,持续时间75天共1800小时,试验具体数据见表7-4。

表7-4 DG 49B井回灌试验相关数据

第Ⅰ组:自然间歇回灌试验。依靠流体自重进行的自然回灌,当回灌井内水位接近井口时则停止,以自然间歇方式恢复水位24小时后开始进行下一次试验,反复多次以判断自然间歇情况下回灌井的回灌能力。

第Ⅱ组:定流量“回扬―回灌”试验。回灌量控制在20m3/h左右的自然回灌,每次试验开始前先进行一段时间的回扬,以判断不同回扬量对回灌能力的影响。

第Ⅲ组:大流量“回扬―回灌”试验。试验前先进行一段时间的回扬,回灌量以30m3/h为目标逐渐增加的自然回灌试验,以判断“回扬―回灌”模式下回灌井的最大回灌能力。

第Ⅳ组:加压回灌试验。回扬后先自然回灌,当水位涨至井口后开始加压回灌,额定压力稳定在0.2MPa,加压后将回灌量上调至40m3/h,以此判断压力对回灌效果的影响。

从试验数据可知:DG 49B回灌井在自然间歇模式下回灌能力是有限的,没有回扬的第Ⅰ组试验较其他3组回灌量要明显偏小,且间隔24小时之后的每次试验回灌量出现递减,无论从回灌持续时间还是累计回灌量上,均清楚地反映出“回扬―回灌”模式下的回灌能力强于自然间歇模式。

图7-1是此次第Ⅰ、第Ⅱ组试验的回灌效果图(吸水指数指单位时间内回灌量与井底压差之比值,为衡量回灌井回灌能力和效果的重要指标),对比图上各曲线形态可发现:经过第一次回扬4小时后, DG-49B井回灌能力能基本恢复到回灌初期的水平(曲线Ⅱ-1);再经过第二次回扬8小时后,回灌能力得到了显著提升,在灌量基本稳定的情况下,回灌延续时间也大大延长(曲线Ⅱ-2);到了第三次回扬4小时后,DG-49B井的回灌能力与前一次相比有了一定程度下降,并在一段时间内回灌量不稳定出现大幅波动(曲线Ⅱ-3),但总体而言,其回灌效果仍好于前4次试验。由此表明定期回扬措施可以使回灌井的回灌能力,得以逐步恢复,但随着回灌量的不断累计,在回扬量不变的情况下,回扬的效果会逐渐减弱。

“回扬―回灌”实际上是回灌能力“恢复―消耗”的过程。在“回扬―回灌”模式下,回扬率(即一次回扬量与回扬后能够注入的水量比值)越低,说明回灌能力消耗越缓慢,回灌效果越佳。从试验数据分析:回扬率在20%~30%时,平均回灌量可维持在20m3/h左右,回灌持续时间最长,累计灌量也较大。但应避免回扬率过大,防止储层可灌能力过度消耗,影响回灌的持续,如第Ⅲ组大流量“回扬―回灌”模式下,回扬率大于50%时,回灌的整体效果就不太理想了。从实际运行数据来看,回灌操作时应以小流量开始,在一定时间后再以额定流量回灌,这样可有效延长回灌的持续时间,降低回扬率。

图7-1 DG-49B井吸水指数历时曲线

图7-2 DG-49B井加压回灌历时曲线

孔隙型热储层中要想增加回灌量,“回扬―加压回灌”方式是一种不错的选择。DG-49B井在加压到0.2Mpa时,回灌量尽管也出现衰减,但最终衰减趋势趋于平缓,并可逐渐稳定在30m3/h左右(图7-2),加压回灌量最大可增加20%左右。

该项目供暖期的生产性回灌采用封闭井口的带压回灌,以2天为一周期,遵循“回灌44小时―回扬4小时”的定时循环运行方式,其回灌量可提升至25m3/h左右。

4.试验分析

综合天津地区典型回灌实例,可以得出以下结论:

(1)正确认识储层特点,选择合理的采灌对井布局,有助于对回灌系统的长期运行。以孔隙型储层为例,布置在古河道中的采灌对井自然回灌效果就好,天津塘沽、武清下朱庄馆陶组回灌井回灌能力都在100m3/h以上;布置在深大断裂下降盘、快速堆积的深凹陷区回灌效果就差,天津白塘口凹陷馆陶组回灌井回灌能力在40m3/h左右。德国总结出用于地热回灌的砂岩层应具备条件值得我们借鉴。

(2)回灌依靠抬高井口压力使回灌水克服阻力向井筒外围运动,而井口压力又是各种因素综合影响的结果。在一切条件均相同的情况下,回灌量随井口压力增大而增加。但两者之间是一种非线性关系,可以根据回灌时的具体情况找出最佳灌量时的最佳井口压力。

(3)造成地热井回灌能力下降的主要原因是阻塞。当循环尾水被回灌到原热储层之后,化学的不相容性短期内不会起太明显的作用,但有相当量的固体悬浮物质是由抽出的流动水体携带向回灌井的,从过滤截留材料中发现的斜长岩、钾长石、石英,以及由劣质套管(潜水泵、测管、输水管网)氧化而新形成的铁-锌氧化物与硫化物是引起堵塞、回灌困难的主要原因。

(4)孔隙型储层厚度较大,热能近70%赋存于岩石骨架,且一个采灌期仅为一年的1/3。以热储温度77℃,回灌量50m3/h,回灌水温38℃,76℃为冷锋面为例,用二维流数值模拟结果显示,回灌30年冷锋面半径为360-375m,最大冷水动力锋面为570m,温度场运移速度大约是水动力场运移速度的2/5。若生产井寿命为30年,回灌井距抽水井800-1000m,抽水井温度不会受到影响(欧阳矩勤,1994)。

(5)尽管孔隙型热储回灌目前还是一个世界性的难题,但人们在不断的实践中也探索出了一些宝贵的经验,如:“回扬―回灌”循环运行方式可以在一定程度上保证回灌的持续性;灌量应从小到大逐渐递增;当地热井的回扬率低于20%时,及时回扬反抽洗井是保证回灌持续的关键。天津地区的回灌实践经验只具有借鉴作用,对于不同的沉积盆地,应视热储层地质条件的不同,地热井的成井技术、地面处理工艺、运行操作而异进行探索和完善。

顶一下
(0)
0%
踩一下
(0)
0%